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Abstract

Radiative properties of clouds over the Indian subcontinent and nearby oceanic regions
(0–25◦ N, 60–100◦ E) during the Asian summer monsoon season (June–September)
are investigated using the Clouds and Earth’s Radiant Energy System (CERES) Top of
the Atmosphere (TOA) flux data. Using multi-year satellite data, the net cloud radiative5

forcing (NETCRF) at the TOA over the Indian region during the Asian monsoon season
is examined. The seasonal mean NETCRF is found to be negative (with its magnitude
exceeding ∼ 30 Wm−2) over (1) the northern Bay of Bengal (close to the Myanmar–
Thailand coast), (2) the Western Ghats and (3) the coastal regions of Myanmar. Such
strong negative NETCRF values observed over the Indian monsoon region contradicts10

the assumption that near cancellation between LWCRF and SWCRF is a generic prop-
erty of all tropical convective regions. The seasonal mean cloud amount (high and
upper middle) and corresponding cloud optical depth observed over the three regions
show relatively large values compared to rest of the Indian monsoon region. Using
satellite derived cloud data, a statistical cloud vertical model delineating the cloud cover15

and single scattering albedo was developed for the three negative NETCRF regions.
The shortwave (SW), longwave (LW) and net cloud radiative forcing over the three
negative NETCRF regions are calculated using the Rapid Radiative Transfer Model
(RRTM) with cloud vertical model as input. The NETCRF estimated from CERES ob-
servations show good comparison with that computed using RRTM (within the uncer-20

tainty limit of CERES observations). Sensitivity tests are conducted using RRTM to
identify the parameters that control the negative NETCRF observed over these regions
during the summer monsoon season. Increase in atmospheric water vapor content dur-
ing the summer monsoon season is found to influence the negative NETCRF values
observed over the region.25
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1 Introduction

Radiation at the top of the atmosphere and surface of earth are significantly modulated
by the presence of clouds in the atmosphere. Effect of clouds on the earth’s radiation
budget can be gauged by Cloud Radiative Forcing (CRF), which is defined as the
difference between clear sky and total sky radiation (Charlock and Ramanathan, 1985).5

CRF can be estimated directly from satellite observation at the top of the atmosphere
(TOA) (Ramanathan et al., 1989; Harrison et al., 1990) as well as at the surface by
means of satellite inversion and modeling (Zhang et al., 1995; Rossow and Zhang,
1995; Pavlakis et al., 2008). Studies have shown that global average TOA shortwave
cloud radiative forcing (SWCRF) is negative while TOA longwave cloud radiative forcing10

(LWCRF) is positive with net effect being cooling of the earth–atmosphere system.
However, over tropical convective regions, TOA LW and SW cloud radiative forcing are
found to cancel each other (Ramanathan et al., 1989; Kiehl and Ramanathan, 1990;
Kiehl, 1994; Hartmann et al., 2001; Futyan et al., 2004). Kiehl (1994) theorized that
occurrence of cloud tops close to tropical tropopause over the Western Pacific results15

in the observed near cancellation between the SW and LW CRF. Jensen et al. (1994)
studied the sensitivity of TOA flux to cloud micro/macro-physical properties using a 1-
D radiative transfer model and observed that net radiative forcing of cirrus near the
tropical tropopause is positive for cloud optical depths less than ∼ 16 and negative
for larger optical depths. Studies show that changes in cloud particle size and optical20

depth can cause the NETCRF to vary between positive or negative values depending
on the magnitude and direction of change (Zhang et al., 1999). Feedback of cloud
radiative properties on the climate can be either positive or negative depending on
the cloud microphysics and single-scattering properties (Liou and Ou, 1989; Stephens
et al., 1990).25

There exist few convective regions over tropics where near cancellation of SW and
LW CRF is not strictly followed (Pai and Rajeevan, 1998; Rajeevan and Sreenivasan,
2000; Hartmann et al., 2001; Futyan et al., 2004; Balachandran and Rajeevan, 2007).
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Rajeevan and Sreenivasan (2000) has shown (using ERBE data) that net cloud ra-
diative forcing is negative for a sizeable area over the Indian region during the sum-
mer monsoon season. Long-term studies show that the North Bay of Bengal region
during the summer monsoon season is characterized by large amount of high clouds
with cloud top altitude close to tropical tropopause (Devasthale and Fueglistaler, 2010;5

Meenu et al., 2010). The region also experiences highest integrated latent heat re-
lease observed over the planet during the Asian summer monsoon season (Zuluaga
et al., 2010). Rajeevan and Srinivasan (2000) proposed that presence of large amount
of optically thicker high level clouds are the main reason behind the observed nega-
tive NETCRF over the Bay of Bengal. Balachandran and Rajeevan (2007) showed that10

NETCRF over the oceanic regions of the Indian monsoon region are strongly corre-
lated with changes in high cloud amount while over the land regions, both middle and
high cloud amount variations make substantial contribution. Patil and Yadav (2005) ob-
served that NETCRF over the Asian monsoon region undergo a year-to-year variability
with maximum magnitude in 1988 and minimum in 1987 indicating association between15

monsoon rainfall activity and CRF over the region. Roca et al. (2004) studied the influ-
ence of atmospheric water loading on the LW cloud radiative forcing over the Bay of
Bengal using idealized radiative transfer computations and showed that negative cloud
radiative forcing is closely associated with increased atmospheric water vapor loading.

Earlier studies suggest that the negative NETCRF observed over the Indian region20

(0–25◦ N, 60–100◦ E) during the Asian summer monsoon season is mainly influenced
by the cloud macro physical properties (cloud amount, cloud height) with little under-
standing on the impact of microphysical (cloud optical depth, particle size and habit)
and environmental variables (water vapor, SST). A comprehensive study detailing the
influence of these variables on NETCRF over the Indian region during summer mon-25

soon season is yet to be carried out. Objective of the present study is to understand
the influence of these parameters on the observed negative NETCRF over the Indian
region during the summer monsoon season. This paper delineates various negative
NETCRF regimes observed over the Indian region during the summer monsoon sea-
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son using the Clouds and Earth’s Radiant Energy System (CERES) TOA flux data and
examines the factors that control it. Influence of cloud micro/macro physical properties
and environmental variables on the cloud radiative forcing over the Indian region is an-
alyzed using satellite observations and modeling. The paper is divided into following
sections. Section 2 describes the data used in the estimation of CRF and error analysis.5

Section 3 examines the radiative transfer model used for the computation of TOA flux
and different parameterization schemes. Section 4 examines the CERES observation
of CRF over the Indian region. Section 5 describes the comparison of NETCRF from
CERES and RRTM simulations and various sensitivity analysis performed. Sections 6
and 7 summarize the main results of the paper.10

2 Data and methodology

2.1 CERES TOA flux data

The mean cloud radiative forcing over the Indian region during the summer monsoon
season (June–September) of 2002–2005 was derived by analyzing the TOA flux data
from CERES Aqua SRBAVG-GEO (Edition 2A) dataset, which contain the monthly15

mean regional TOA total-sky and clear-sky radiative fluxes (LW and SW) in a 1◦ ×1◦

latitude/longitude grid. CERES SRBAVG-GEO data use narrow band radiance from
geostationary meteorological satellites to account for changes in flux and cloud con-
ditions between daily CERES observations, which reduce temporal sampling errors.
The uncertainties in the estimated CERES TOA flux is relatively small compared to20

that derived from the ERBE data (Loeb et al., 2005) mainly due to better scene iden-
tification and incorporation of better angular distribution models (Smith et al., 2012).
CERES SRBAVG clear-sky monthly mean TOA fluxes are derived from CERES Single
Scanner Footprint (SSF) data that are completely cloud-free according to 1 km reso-
lution Moderate Resolution Imaging Spectroradiometer (MODIS) data. However, due25

to the coarse spatial resolution of CERES instrument (20 km at nadir), estimation of
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clear sky flux is possible only from geographical regions where clouds occur less fre-
quently and cloud free regions have relatively large area. Because of this, clear-sky flux
maps from CERES SRBAVG GEO contain many gaps (no clear sky flux data), espe-
cially over the Indian monsoon region. In order to circumvent this problem, TOA clear
sky flux data from the CERES Terra Energy Balanced and Filled (EBAF) Edition 1A5

product (Loeb et al., 2009a) were used in the present study. CERES EBAF data pro-
vides TOA clear-sky fluxes for many overcast regions that have no CERES clear-sky
observations over the course of a month. CERES SSF TOA clear-sky fluxes require
99 % of MODIS pixels (with 1 km nominal area) within the CERES footprint (20 km
nominal) to be classified as clear. However, in a overcast cloudy region, there maybe10

1 km clear-sky patch present inside a 20 km footprint region. The CERES EBAF prod-
uct uses this clear-sky MODIS pixel radiance to derive broadband radiances, which
are constrained to the overall CERES footprint to derive the TOA clear sky flux. In the
present study, monthly mean TOA total sky flux from CERES SRBAVG GEO product
and monthly mean TOA clear sky flux from the CERES EBAF product are used in the15

estimation of cloud radiative forcing over the Indian region during the summer monsoon
season. More details regarding the CERES EBAF dataset are available online (http:
//ceres.larc.nasa.gov/documents/DQ_summaries/CERES_EBAF_Ed2.7_DQS.pdf).

CRF is used as a metric to assess the radiative impact of clouds on the climate
system, which is defined as the difference between TOA clear and total-sky flux. Using20

the CERES TOA flux measurements, the cloud radiative forcing is calculated by taking
the difference between TOA clear sky and total sky flux.

SWCRF = SWclear −SWtotal (1)

LWCRF = LWclear −LWtotal (2)
25

Where the subscripts “clear” and “total” represent the TOA clear-sky and total-sky
fluxes, respectively. The net cloud radiative forcing (NETCRF) at the TOA is estimated
by adding the shortwave and longwave cloud forcing.

NETCRF = SWCRF+LWCRF (3)
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Which can be re written as,

NETCRF = SWclear +LWclear − (SWtotal +LWtotal) (4)

To determine the cloud radiative forcing over the Indian region, monthly mean TOA
total-sky flux from CERES SRBAVG GEO and clear-sky flux from CERES EBAF
dataset during the summer monsoon season (June–September) of 2002–2005 are5

used.

2.2 Uncertainty analysis

This section presents the methodology used to compute the total uncertainty in
NETCRF values due to uncertainties in the CERES TOA flux measurement. Uncertain-
ties in the CERES flux measurement can be broadly categorized into three main com-10

ponents; Sampling errors, calibration errors and algorithm errors. Sampling error refers
to error associated with time sampling and spatial averaging of the data associated with
the instrument normalization (Young et al., 1998), which corresponds to 0.3 Wm−2 for
the SW and LW flux (Loeb et al., 2009a). An additional error term equal to the stan-
dard error of the regional mean TOA flux is also added to the sampling error term. The15

term “algorithm error” refers to the errors associated with data retrieval which in this
case mainly stems from uncertainties associated with narrow-to-broadband conver-
sion of radiance, Angular Distribution Models (ADM) and scene identification whereas
calibration error refers to the instrument measurement error (Level 1 product error).
More details regarding the of CERES TOA flux estimation and associated uncertain-20

ties can be found in Loeb et al. (2009a) as well as in the CERES EBAF data quality
summary document. In the present analysis, it is assumed that sampling, calibration
and algorithm errors associated with the CERES TOA flux are uncorrelated and inde-
pendent. The total uncertainty in the TOA flux due to these different error sources can
be expressed as (Chambon et al., 2012),25

δTOAFLUX =
√
δ2

sampling +δ2
calibration +δ2

algorithm (5)
28901
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Using the above equation, uncertainty in the CERES TOA clear and total sky flux (LW
and SW) are estimated. The uncertainty computations are performed at the monthly
mean scale using error estimates for a 1◦ ×1◦ latitude/longitude grid area.

In order to estimate the uncertainty in NETCRF, effect of propagation of variable un-
certainty on the uncertainty of a function is to be considered. From Eq. (4), it can be5

seen that NETCRF is a function of SW and LW flux. Hence total uncertainty associated
with the CERES NETCRF measurement is related to uncertainties in CERES SW and
LW flux (Loeb et al., 2009b). Using the general law of error propagation, it is possible to
analytically determine how measurement uncertainty propagates into quantities, which
are functions of the measurement. For a multi-variable function y (x1,x2,x3, . . .xN), the10

total uncertainty in y due to uncertainty in the input variables x (assuming that error
contributions are small compared to the absolute value of the variable) can be ex-
pressed as (Taylor, 1982; Lo, 2005)

δy =

√√√√ N∑
i=1

(
δx

∂y
∂xi

)2

+
N∑

i 6=j=1

(
Rijδxiδxj

∂y
∂xi

∂y
∂xj

)
(6)

where δy is the total uncertainty in y , δxi and δxj are the uncertainties associated with15

the input variables (xi and xj ) and Rij represent the correlation coefficient between the
input variables. The uncertainty in y are governed by the (a) change in y for a given
change in the variables xi and xj (partial derivatives), (b) uncertainties in the input
variable δxi and δxj and (c) how the variables xi and xj are correlated. If xi and xj are
not correlated and independent of each other, second term in Eq. (6) vanishes and the20

equation takes the form of a Gaussian error propagation formula (Taylor, 1982; Evans
et al., 1984). Depending on the correlation between individual input variables and sign
of the product of partial derivatives in the second term of Eq. (6), uncertainty in y
can increase or decrease. The uncertainties in the CERES TOA SW and LW (clear
and total sky) flux represent the input variables in the Eq. (6) and R represent the25

correlation between these two variables. However, if TOA flux from two different dataset
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were used for computing the NETCRF (eg., total-sky flux from CERES and clear-sky
flux from ECMWF reanalysis), the input fluxes will not be correlated and the second
term in Eq. (6) will vanish. In the present analysis, uncertainty in the CERES TOA
SW and LW flux (using Eq. 5) as well as correlation coefficient between the fluxes are
computed. Using these values as input in Eq. (6), the total uncertainty in the NETCRF5

is estimated.

2.3 Cloud data

The seasonal mean cloud parameters from the CERES SRBAVG2-GEO dataset for
the summer monsoon season of 2002–2005 are used in the study. The SRBAVG2
GEO cloud data include layer averaged monthly mean cloud and aerosol retrievals10

from MODIS and geostationary satellites (Remer et al., 2005; Menzel et al., 2008). The
MODIS derived cloud fraction and cloud optical depth are believed to be more accurate
than that from geostationary satellites owing to the higher quality of the MODIS data.
Studies show that MODIS could detect cirrus clouds over tropics having cloud optical
depth as low as 0.02 with an uncertainty factor of 2 (Dessler and Yang, 2003). How-15

ever, combining geostationary satellite data measurements with the CERES-MODIS
data minimizes the temporal sampling errors and incorporates the diurnal variation
in cloud amount and TOA flux between the two daily MODIS Aqua measurements.
The SRBAVG2-GEO cloud data provides information about retrieved cloud parameters
in four atmospheric layers that are combination of MODIS and geostationary derived20

cloud retrievals. Seasonal mean values of cloud fraction, cloud top height, cloud par-
ticle size and cloud optical depth available from SRBAVG GEO cloud database for
high (cloud top pressure h < 300 hPa), upper middle (h = 300–500 hPa), lower mid-
dle (h = 500–700 hPa) and low level (h > 700 hPa) clouds respectively, are used in the
analysis.25
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2.4 ISCCP FD TOA flux data

The International Satellite Cloud Climatology Project (ISCCP) data is an archive of
more than 20 yr of global cloud observations. ISCCP data utilizes the radiance in-
formation from a series of geostationary satellites to create 3 hourly global maps of
cloudiness. The ISCCP-FD data is an improved version of a previous ISCCP radiative5

flux product (Zhang et al., 1995) and provides radiative fluxes at the TOA, surface, and
several levels within the atmosphere (Zhang et al., 2004). ISCCP FD data provides
global total-sky and clear-sky fluxes (at surface, 680 mbar, 440 mbar, 100 mbar and
TOA) for every 3 h interval in the shortwave and longwave range. Inter comparison of
monthly mean fluxes from ISCCP-FD with ERBE and CERES suggest that there exist10

an uncertainty of the order of ∼ 5–10 Wm−2 in the calculated TOA flux from ISCCP-
FD dataset. Details regarding the data and methodology adopted in the estimation of
ISCCP FD flux are provided in Zhang et al. (2004) and Rossow et al. (2005). In the
present study, TOA SW and LW fluxes from the ISCCP radiative flux dataset (ISCCP-
FD) for the June–September months of 2002–2005 are used to estimate the seasonal15

mean CRF over the Indian region.

3 Rapid Radiative Transfer Model (RRTM)

The rapid radiative transfer model is a band model for the calculation of longwave and
shortwave atmospheric radiative fluxes and heating rates (Mlawer et al., 1997; Iacono
et al., 2000; Clough et al., 2005). RRTM use the correlated-k method, which is a ac-20

curate and computationally fast radiative transfer scheme. TOA LW fluxes calculated
by RRTM agree with those computed by line-by-line radiative transfer model within
∼ 1 Wm−2 range, while SW fluxes agree within ∼ 1.5 Wm−2 range (Clough et al., 2005;
Morcrette et al., 2008). During the Spectral Radiance Experiment (SPECTRE) pro-
gram, results from the RRTM flux simulations are validated against other radiation mod-25

els for various atmospheric conditions (tropical, mid-latitude summer/winter) (Ellingson
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and Fouquart, 1991; Ellingson and Wiscombe, 1996). An important feature of RRTM is
that it incorporates Monte-Carlo Independent Column Approximation (McICA) to rep-
resent sub-grid cloud variability (Barker et al., 2003; Pincus et al., 2003). A 1-D column
version of RRTMG is used in the present study to compute the TOA fluxes. RRTM
input data typically consists of surface emissivity, cloud/aerosol optical depth, altitude5

profile (60 atmospheric pressure levels) of temperature, pressure, cloud fraction and
single scattering albedo, atmospheric mixing ratio profiles of water vapor, ozone, CO2,
methane and other trace gases, etc.

In the present study, a tropical model atmosphere incorporating above mentioned
parameters are used as input in RRTM simulations. An idealized altitude profile of10

atmospheric water vapor mixing ratio is built and used in the model simulations. For
this purpose, altitude profile of relative humidity (RH) in the atmosphere is constructed
following the methodology adopted in Roca et al. (2004). In order to construct the
vertical profile, first it is assumed that the relative humidity is constant in the atmo-
spheric boundary layer (between surface and 850 hPa) and in the stratospheric lay-15

ers (< 100 hPa). RH value of 85 % is assumed for the boundary layer and 10 % for
the stratospheric layer in all the profiles. The free tropospheric (between 850 hPa and
100 hPa) humidity is then varied from 5 % to 100 % in steps of 5 to create a number
of RH altitude profiles. By converting the relative humidity to corresponding water va-
por mixing ratio, a number of idealized water vapor mixing ratio profiles are created.20

The precipitable water (PW) concentration for each profile is estimated by integrating
the water vapor mixing ratio from surface to top of the model atmospheric layer. In
the present model simulations, changing the free tropospheric humidity (from 5 % to
100 %) in the model atmospheric profile leads to a corresponding change in the PW
from 33 to 68 mm.25

Using RRTM, TOA flux is estimated for every half hour interval for full day, which is
then integrated to obtain the daily mean TOA SW and LW flux. The total sky SW and LW
flux are estimated by incorporating cloud parameters (cloud cover, optical depth and
single scattering albedo) in to the model computation, whereas clear sky flux estima-
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tion do not include any cloud data. In the computation of total sky LW flux using RRTM,
altitude profile of mean cloud cover and cloud optical depth (from CERES data) for the
study region is used. For the total sky SW flux computation, in addition to cloud cover
and optical depth, altitude profile of single scattering albedo is also required (which
is not available from the satellite measurements). In addition, the model also requires5

information regarding vertical overlap between different cloud layers. However, satel-
lite derived cloud cover data do not provide information about overlap among different
cloud layers in the atmosphere without which modeling of TOA flux is difficult. To cir-
cumvent this deficiency, parameterization schemes are used to determine the vertical
overlap between different cloud layers and cloud single scattering albedo (ice and wa-10

ter clouds). Details regarding the cloud overlap scheme and single scattering albedo
parameterizations are described in the subsequent sections.

3.1 Parameterization schemes

3.1.1 Cloud overlap

Modeling of radiative flux due to clouds are complicated by difficulties in parameter-15

izing its single-scattering properties (Liou, 1986) and cloud vertical structure (Weare,
1999; Rossow et al., 2005). Satellite observations of multi-layered clouds from space
only provide information about the topmost cloud layer encountered with lower level
clouds being either fully or partially observed. If there is no overlap among different
cloud layers in an atmospheric column, then cloud amount at each level observed by20

the satellite is the actual cloud amount. However, this assumption does not hold true
in most cases involving partially cloudy skies. When there is overlap among different
cloud layers, information about actual amount of cloud in the lower levels are not fully
recorded by satellites. Even with enhanced satellite and surface observation capabil-
ities, information about cloud vertical structure is rather limited. Presence of partially25

filled cloud layers in the atmosphere creates problem in the model computation of the
radiative fluxes because of the nonlinear relation between cloud properties and TOA
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fluxes (Bergmann and Hendon, 1998). This, along with lack of information about the
vertical cloud overlap in the model can lead to large errors in the estimated radia-
tive fluxes. In order to circumvent this problem, most models employ cloud overlap
schemes for computing the radiative fluxes (Collins, 2001; Zhang et al., 2004; Rossow
et al., 2005; Cole et al., 2011). Cloud overlap schemes are also used by satellite simu-5

lators in comparing the simulated cloud data with observations from passive or active
remote sensing instruments (Klein and Jakob, 1999; Webb et al., 2001; Zhang et al.,
2005; Bodas-Salcedo et al., 2011). Most radiative transfer models use vertical cloud
overlap schemes like maximum overlap, random overlap or combination of maximum
and random overlap between cloud layers. In the present study, a cloud vertical model10

is developed using a type of maximum/random cloud overlap scheme.
Geleyn and Hollingsworth (1979) theorized that if clouds appear in two adjacent

atmospheric layers, such cloud layers are usually vertical parts of the same cloud and
there should be maximum overlap between them. Maximum overlap between two cloud
layers can be expressed mathematically as,15

Cmax = Max.(Cn,Cn−1) (7)

Where Cn and Cn−1 represents the cloud fraction of two adjacent cloud layers and
Cmax represent total cloud amount due to the overlap of two cloud layers. The random
overlap assumption holds good only when the cloud layers are separated by at least
one clear-sky layer. The random cloud overlap scheme assumes that the cloudiness20

in any given cloud layer is independent of the cloudiness of other layer (Warren et al.,
1985). The total cloud amount in a vertical column assuming random overlap between
cloud layers can be expressed mathematically as (Stephens et al., 2004),

Ctotal = 1−
l∏

n=1

(1−Cn) (8)

Where Ctotal is the total cloud amount, Cn is cloud fraction for a given cloud layer n. Tian25

and Curry (1989) showed that clouds tends to follow the maximum overlap scheme for
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small horizontal cloud area whereas they follow the random overlap for large horizontal
area (≥ 500 km2). But in reality, there are no completely random or maximum cloud
overlap occurrences in nature but rather specific combinations of cloud types associ-
ated with specific meteorological conditions (Hahn et al., 2001; Rossow et al., 2005).
Whether observed from satellites or surface, there exists a specific overlap relationship5

among different cloud types for each meteorological situation. In the present study, we
are trying to develop a cloud overlap scheme that represent the altitude structure of
a convective cloud system characterized by contiguous cloud layers. Since contigu-
ous cloud layers can be expected to possess fairly high degree of vertical correlation,
a combination of random and maximum overlap schemes are used to represent the10

cloud vertical structure. Here it is assumed that cloud layers belonging to a particular
cloud block (eg., all the cloud layers in the high cloud group) in a convective system are
maximally overlapped, whereas adjacent cloud blocks are randomly overlapped (eg.,
between high and upper middle cloud group). Therefore, effective cloud fraction for all
the cloud layers belonging to a particular cloud block will remain same (due to maxi-15

mum overlap) whereas it will change from one cloud block to another (due to random
overlap between two adjacent cloud blocks). Chou et al. (1998) also adopted a similar
type of maximum/random assumption with maximum cloud overlap in each of three
cloud regions (lower, middle, and upper troposphere) and random overlap between
these cloud regions. Using this methodology (Eqs. 7 and 8), altitude profile of cloud20

cover is constructed using the cloud fraction data. A graphical representation of typical
altitude structure of contiguous cloud layers calculated using the cloud overlap scheme
is shown in Fig. 1.

The cloud vertical model is built as follows: the CERES GEO layer averaged cloud
properties are defined for four cloud groups mainly; high, upper middle, lower middle25

and low level clouds. The mean cloud top pressure for each cloud group defines the
boundary of cloud blocks in the model atmosphere; ie, cloud layers belonging to high
cloud block in the model atmosphere are defined between the CERES mean high cloud
top pressure (usually between 180–250 hPa in the model) and upper middle cloud top
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pressure (between 300–400 hPa in the model). In the present cloud overlap scheme,
the effective cloud fraction for all high cloud layers in the model will be equivalent to
the CERES high cloud fraction since all cloud layers with in a particular cloud block are
maximally overlapped. Effective cloud fraction for the upper middle cloud block in the
model is estimated assuming random overlap (using the Eq. 7) between the CERES5

high cloud and upper middle level cloud fraction. This newly estimated cloud fraction
(using Eq. 8) is assigned to all the layers in the upper middle cloud block (maximum
overlap) in the model atmosphere defined between the upper middle cloud top pressure
and lower middle cloud top pressure. Using this methodology, effective cloud fraction
for lower middle and low level clouds are also estimated. Base of the newly constructed10

cloud vertical profile is fixed at the top of boundary layer (850 hPa) while the cloud top
coincides with that of the high level cloud.

3.1.2 Cloud single-scattering albedo (SSA)

For estimating TOA SW flux using RRTM, altitude profile of cloud SSA is required
along with cloud cover information. Single scattering properties of clouds are governed15

by the cloud particle size, shape and water content. They also vary over a large range
of values depending on the wavelength band under consideration. In this section, pa-
rameterization schemes used for deriving the single scattering albedo (SSA) of ice
and water clouds are explained. SSA parameterization provides a mathematical re-
lationship between the cloud properties (particle size, optical depth, water content)20

and single scattering albedo. Several attempts were made to parameterize the SSA of
a cloud system solely based on the cloud water content alone (Sun and Shine, 1994;
Platt, 1997). However, it was observed that cloud water content alone is insufficient
and information about the cloud particle size is also required in the parameterization
of SSA (Wyser and Yang, 1998). For water clouds, the single-scattering properties can25

be effectively parameterized either in terms of their average size (Slingo, 1989; Hu and
Stamnes, 1993) or based on the water content/optical depth (Fouquart and Bonnel,
1980; Fouquart, 1985; Räisänen, 1999). Using the parameterization methodology of
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Fouquart (1985), single scattering albedo (ω) for water clouds are estimated for differ-
ent values of cloud optical depth. The parameterization equation can be expressed as
(Fouquart, 1985),

ω = 1− (9×10−4 +2.75×10−3(µ+1)exp(−0.09τ)) (9)

Where µ is the solar zenith angle and τ is the cloud optical depth. This equation is5

based on calculations for a lower-tropospheric cloud with a specific drop size distribu-
tion having effective radius of 9.9 µm. Using the above formula, SSA values were calcu-
lated for water clouds with varying optical depth and used in the present study. Unlike
water clouds, spherical particle assumption is not valid in determining the single scat-
tering properties of ice clouds since they take on a variety of shapes like plates, hexag-10

onal crystals, bullet rosettes (Schmidt et al., 1995). Because of this, single-scattering
albedo of ice clouds are defined mainly by the effective cloud particle size (Hu and
Stamnes, 1993; Fu, 1996). The effective particle size of a ice cloud can be defined
mathematically as,

R = 3/4

∫Lmax

Lmin
V (L)n(L)dL∫Lmax

Lmin
A(L)n(L)dL

(10)15

Where L is the dimension of an ice crystal, V (L) is the volume of the crystal, A(L) is the
projected area, and n(L) is the size distribution. The parameterization scheme takes
into account the effective size of ice crystal, which removes the ambiguity regarding
the particle shape and size from the SSA estimation. The single scattering albedo of
an ice crystal can be expressed as (Key et al., 2002),20

ωi = b0 +b1R +b2R2 +b3R3 (11)

Where b0, b1, b2 and b3 are the empirical coefficients determined through regression
for different SW spectral bands (i) and R is the mean ice particle size (estimated from
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CERES SRBAVG2 GEO data). The bulk single scattering albedo (ω) of ice crystals for
the entire SW band is computed by integrating the individual SSA values computed
for different shortwave bands and expressed mathematically as (Slingo and Schrecker,
1982; Chou et al., 1998),

ω =

∑
βi (λ)ωi (λ)S(λ)∑

βi (λ)S(λ)
(12)5

Where β is the mean extinction coefficient and S is normalized irradiance in each spec-
tral band. The above parameterization scheme for ice cloud single-scattering albedo
is an extension of the Streamer radiative transfer model (Key and Schweiger, 1996),
which has been validated for different ice crystal size distributions and habits. Using
this method, SSA values are computed for ice cloud particles and used in the compu-10

tation of TOA flux. Using these SSA parameterization schemes, a cloud vertical model
delineating the effective cloud cover and SSA are developed and used to model the
TOA flux and CRF.

4 Radiative characteristics of convective clouds over the Indian region

Figure 2a and b show the seasonal mean variation of SWCRF and LWCRF respec-15

tively, over the Indian region during the summer monsoon season of 2002–2005 de-
rived from the CERES TOA flux data. From Fig. 2, it can be seen that large posi-
tive LWCRF values (> 60 Wm−2) and negative SWCRF values (< −100 Wm−2) are
observed over oceanic (north Bay of Bengal and northeast Arabian Sea) and land re-
gions alike (coastal Myanmar, Thailand, Cambodia, inland regions of China and West-20

ern Ghats). Absolute magnitude of SWCRF is greater than LWCRF over regions were
LWCRF values exceeds 60 Wm−2 (similar observations were also reported by Ra-
jeevan and Sreenivasan (2000) using ERBE data). Absolute values of LWCRF and
SWCRF show relatively lower values over rest of the oceanic and land areas. Fig-
ure 3 shows the seasonal mean variation of NETCRF over the Indian region during25
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the summer monsoon season of 2002–2005. From Fig. 3, it can be seen that sea-
sonal mean NETCRF show large variation over the Indian region with values ranging
from +30 Wm−2 to −80 Wm−2. No specific pattern exists in the regional variation of
NETCRF over the Indian region. Based on the seasonal mean variation of NETCRF,
the Indian region can be categorized into three distinct NETCRF regimes; (a) posi-5

tive NETCRF regime (> 20 Wm−2) over the south Indian land mass as well as over
the Srilankan region (b) near zero NETCRF (between +20 and −20 Wm−2) over the
oceanic regions to south of Indian land mass as well as over northern India and (c)
negative NETCRF regime (< −20 Wm−2) over the north Bay of Bengal close to Myan-
mar coast, Bangladesh, Myanmar, Inland china and over the northeast Arabian Sea as10

well as over the Western Ghats. In the present study, we focus mainly on the negative
NETCRF regimes over the Indian region (delineated by black boxes in Fig. 3). They
are designated as, (1) the Bay of Bengal (10–22◦ N, 85–100◦ E) region representing
oceanic regime, (2) Myanmar (15–20◦ N, 92–100◦ E) and (3) the Western Ghats (10–
20◦ N, 72–77◦ E) representing land regime.15

Table 1 presents the seasonal mean TOA flux and CRF estimated from CERES
data for the three regions during summer monsoon season of 2002–2005. In general,
clear sky SW and LW flux values are relatively lower over the Bay of Bengal region.
The mean SWCRF and LWCRF values are larger (in magnitude) over the Bay of Ben-
gal (BOB) compared to Myanmar (MYN) and the Western Ghats (WGS). In all the20

three regions, the absolute value of SWCRF is larger than LWCRF indicating imbal-
ance between the two. The mean NETCRF estimated for the three regions vary be-
tween −30 Wm −2 and −37 Wm−2 with largest values (in absolute magnitude) observed
over Myanmar region. However, mean NETCRF values estimated for the three regions
(shown in Table 1) do not bring out the complete picture without quantifying the uncer-25

tainties associated with it. Using methodology described in Sect. 2.2, the uncertainty
associated with the CERES TOA flux and NETCRF for the three regions are computed
and presented in Table 2 and 3, respectively. Table 2 presents various uncertainties
associated with CERES TOA flux values over the three regions. Using these values as
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input to Eq. (6), total uncertainty in the NETCRF for the three regions are computed
and presented in Table 3. In general, the total uncertainty in the estimated NETCRF
from CERES TOA flux measurements varies between 3 and 6 Wm−2. Estimated un-
certainty values are smallest for the Bay of Bengal region and largest for the Western
Ghats. It must be noted that total uncertainty in the CERES NETCRF measurements5

are much lower compared to that from ERBE NETCRF measurements (Wielicki et al.,
1995; Cess et al., 2001).

4.1 Cloud characteristics over the Indian region

Figure 4a and b depict the seasonal mean variation of cloud area fraction (in percent-
age) for the high and upper middle level clouds over the Indian region during the sum-10

mer monsoon season estimated from CERES cloud data. Only high and upper middle
level cloud fractions are shown in Fig. 4, since fractional coverage of lower middle
and low level clouds are relatively lower (∼ 10 % or less) over the most of the negative
NETCRF regions. From Fig. 4a, it can be seen that high cloud fraction is relatively large
(> 40 %) over the North Bay of Bengal and land areas over eastern India compared to15

that observed (∼ 20–30 %) over oceanic regions to the south and the Western Ghats.
In contrast, middle level cloud fraction shows large values (∼ 40 %) compared to high
cloud fraction over Coastal regions of Myanmar, Thailand and Cambodia as well as
over the Western Ghats over Indian peninsula. From Fig. 4, it can be observed that
the three negative NETCRF regions (in Fig. 3) are characterized by large values of20

high and middle level cloud fraction compared to rest of the Indian region. High cloud
fraction dominates the cloudiness over the Bay of Bengal region, while upper middle
and high cloud fractions dominate the land NETCRF regimes. However, differentiating
the negative NETCRF regimes merely based on the cloud cover data alone is inade-
quate. In order to have a quantitative understanding regarding parameters influencing25

the three negative NETCRF regimes, seasonal mean variation of various cloud and
environmental parameters over these regions are examined.
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The seasonal mean values of cloud parameters (cloud fraction, particle size, op-
tical depth) and environmental variables (rain rate, Free tropospheric humidity (FTH),
precipitable water) over the three negative NETCRF regions are calculated for the sum-
mer monsoon season of 2002–2005 and are shown in Table 4. From Table 4, it can be
seen that high and upper middle cloud fraction dominates the total cloudiness over5

the three regions. High cloud amount (∼ 51 %) and optical depth (∼ 14) are largest
over the Bay of Bengal while upper middle cloud amount shows large values (∼ 34 %
and 43 %) compared to high cloud amount over the land areas. Amount of lower level
(lower middle and low) clouds are below 10 % over the Bay of Bengal while, it shows
values between 10–15 % over land regions. Earlier studies showed that high clouds10

account for ∼ 65 % of all cloud grids observed over the Indian monsoon region during
the monsoon season (Tang and Chen, 2006; Meenu et al., 2007). Relatively lower val-
ues of low level clouds (compared to high and middle level clouds) are observed over
the three regions, which could be due to underestimation of low level clouds by MODIS
and geostationary instruments over the Indian monsoon region (Tang and Chen, 2006).15

The mean ice and water cloud particle size for the three regions show similar values
while precipitable water vapor values (from GMAO GEOS database) show a variation
between 48 to 58 mm for the three regions. From this analysis, it is not easy to compre-
hend the influence of various parameters on the negative NETCRF over these regions.
In order to obtain a better understanding regarding the influence of these parameters20

on the negative NETCRF over the three regions, TOA flux and CRF values for the three
regions are computed using RRTM simulations. The regional mean values of various
cloud and environmental variables estimated for the three regions are used as input
in the model. Using the cloud cover and cloud particle size data from CERES, altitude
profile of cloud cover and SSA for each region is developed employing the parame-25

terization schemes described in Sect. 3. TOA flux values estimated using the RRTM
simulations for the three regions are used to compute the NETCRF.
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5 Validation of TOA flux and CRF: model vs. observations

The seasonal mean TOA flux estimated for the three negative NETCRF regions from
CERES, ISCCP-FD and RRTM simulations are shown in Table 5. The ISCCP FD TOA
flux data belonging to the study period is used in the estimation of seasonal mean TOA
flux and CRF. In general, TOA flux from CERES observations and RRTM simulations5

are very much in agreement with each other. However, TOA flux derived from ISCCP
FD flux data shows consistently larger values (∼ 5–10 Wm−2) compared to CERES
and RRTM estimations. For example, CERES TOA clear sky SW flux values (in Wm−2)
are 46.8, 63.4, and 61.9 over the Bay of Bengal, Myanmar and the Western Ghats re-
spectively while the same from ISCCP FD (in Wm−2) are 55.4, 71 and 68.6, indicating10

an overestimation (of the order of 7–9 Wm−2) by the ISSCP FD data. Significant varia-
tions between the CERES and RRTM derived fluxes are observed only in the case of
total sky flux estimated over Myanmar and Western Ghats region. Using the TOA flux
values (presented in Table 5), SW, LW and NET CRF values for the three regions are
calculated and presented in Table 6. From Table 6, it can be seen that the CERES and15

RRTM derived CRF values are very much in agreement over the Bay of Bengal region
whereas the ISCCP FD derived values show considerable difference (4–8 Wm−2). Over
the land regions, both the RRTM and ISCCP derived SW and LW CRF values show
substantial variation from CERES derived values. Still, RRTM derived SW and LW
CRF values are much closer to the CERES derived values compared that from ISCCP20

FD. The NETCRF estimated from the CERES and RRTM shows very good agreement
(within the uncertainty limit of CERES observations) while the ISCCP values are well
outside the uncertainty limit of CERES observation.

The NETCRF estimated from ISCCP FD data over the three regions shows con-
sistently large values (in magnitude) compared to CERES and RRTM derived values.25

This indicates that the cloud vertical model used in the estimation of TOA flux (RRTM)
for the three negative NETCRF regimes are more accurate in representing the cloud
overlap and altitude structure compared to the cloud vertical structure (CVS) scheme
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used in the ISCCP FD flux estimation. However, it can be argued that the ISCCP CVS
scheme is a general overlap scheme applicable for a broad range of meteorological
conditions, while the present cloud overlap scheme is tailored for a specific convective
cloud condition. The disparity in SW and LW CRF values computed by the RRTM and
CERES over the land regimes (Myanmar and the Western Ghats) can be attributed5

to the underlying uncertainty associated with the parameterization of cloud vertical
structure and its microphysical properties. After successfully simulating the negative
NETCRF regimes over the Indian region using RRTM, the next step is to identify the
parameters that control the negative NETCRF over these regions. This is carried out by
analyzing the sensitivity of cloud radiative forcing to various cloud and environmental10

variables (using RRTM) and explained in the subsequent sections.

5.1 Sensitivity calculations

In this section, sensitivity of CRF to various cloud macro/micro physical properties
and environmental variables are analyzed by studying their relative contribution to the
NETCRF. In the earlier section, it was shown that negative NETCRF over the three re-15

gions could be modeled with good accuracy using RRTM and cloud parameterization
schemes. Using the same simulation methods, it is possible to quantify the depen-
dence of NETCRF on various cloud micro/macro physical and environmental variables
over the three regions. This also provides an opportunity to test the veracity of theo-
retical hypothesis propagated by various investigators on the occurrence of negative20

NETCRF over tropical convective regions. In this analysis, influence of cloud amount,
cloud particle size, single scattering albedo and atmospheric water vapor on the nega-
tive NETCRF over the three regions are examined.

5.1.1 Influence of cloud macro-physical properties on CRF

In the first simulation, influence of cloud top altitude on the LW and SW CRF values are25

examined for the three regions. In this analysis, TOA flux values are computed using
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RRTM for the three regions by varying the cloud top altitude in the respective cloud
vertical model from 125 hPa to 400 hPa in several steps while keeping all other input
parameters constant. The resultant LW and SW CRF for different cloud top pressures
over the Bay of Bengal (thick line) and Myanmar (dashed line) region are estimated
and shown in Fig. 5. From Fig. 5, it can be seen that LWCRF decreases monotonically5

with increase in the cloud top pressure (from ∼ 100 and 80 Wm−2 respectively to ∼ 45
and 40 Wm−2, respectively) for the two regions while the SWCRF shows very little vari-
ation (< 5 Wm−2). This indicates that change in cloud top altitude of high clouds cause
relatively large variation in LWCRF (∼ 50 Wm−2) compared to SWCRF, which results in
causing an imbalance between the two. The sharp wedge observed in the SWCRF vari-10

ation in Fig. 5 is due to the change in cloud cover type from high level to middle level.
These results are in agreement with that of Kiehl (1994) who showed that decrease
(increase) in cloud top altitude causes system to shift towards a negative (positive)
NETCRF regime. However, seasonal mean cloud top altitude (high clouds) over the
Indian region during monsoon season shows a variation between 180–240 hPa. For15

such variation in cloud top altitude, corresponding variation in LWCRF observed for the
three regions are less than 13 Wm−2. This shows that small variation in cloud top alti-
tude of high clouds cannot significantly influence the magnitude of NETCRF over the
Indian region.

In the second sensitivity analysis, we try to quantify the competing influence of cloud20

top and cloud amount on the LWCRF and NETCRF. In this analysis, high cloud amount
in the cloud vertical model representing the Bay of Bengal regime is varied from its
original value of 50 % to 20 % in steps of 10 %, keeping cloud amount of other groups
in the cloud vertical model same. By stepwise reduction in high cloud amount from
cloud vertical model, fraction of upper middle level clouds exposed to the TOA (and to25

the incoming solar incoming radiation) increases from 12 % to 42 %. Running RRTM
with this modified cloud vertical profile shows a decrease in LWCRF from 78 Wm−2

to 66 Wm−2 while the SWCRF show very little variation since the total cloud cover re-
mains the same (top level clouds are sliced off while bottom level clouds remain intact).
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Impact of this reduction in high cloud amount is to increase the absolute magnitude of
the NETCRF (by 12 Wm−2) and shift NETCRF the region towards a stronger negative
regime due the decrease of LWCRF. Similar analysis was performed for the Myanmar
and the Western Ghats region where it showed similar result as that of the Bay of
Bengal region. Cess et al. (2001) observed that change in cloud vertical structure as-5

sociated with El Nino over the tropical Pacific Ocean tend to cause substantial radiative
cooling. It was observed that CRF over Pacific warm pool is partially governed by high
and middle-level clouds during the El Nino year compared to high level clouds during
normal years.This analysis indicates that in a multi layered cloud system, both cloud
vertical structure and cloud amount influences the NETCRF, even though magnitude10

of variation in NETCRF is not significantly large in this case.
In the third test, influence of low levels clouds on the NETCRF is examined over the

three regions while keeping all other parameters in the cloud vertical model constant.
In this analysis, un-obscured portions (visible from TOA) of the low levels clouds are
removed from the cloud vertical profile and LWCRF and SWCRF values are recom-15

puted using the modified cloud vertical model. The modified LW and SW CRF values
estimated from the analysis are presented in Table 7. From Table 7, it can be seen that
the low level cloud cover over these regions has very little influence in controlling the
observed LWCRF and SWCRF compared to high level clouds. The SWCRF over the
Western Ghats shows a decrease (∼ 7 Wm−2) when the modified cloud vertical profile20

(low level clouds removed) is used. For the Bay of Bengal and Myanmar region, the
maximum decrease in SWCRF is of the order of < 3 Wm−2. Corresponding variation
in the LWCRF is considerably small compared to that of SWCRF. Large low level cloud
fraction (∼ 14 %) was observed over the Western Ghats while it is < 6 % for the other
two regions. Present analysis shows that low level cloud amount has little influence in25

modulating the NETCRF values over the three study regions.
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5.1.2 Influence of cloud microphysical properties on CRF

In the present analysis, influence of cloud single scattering albedo and ice cloud par-
ticle size on NETCRF is investigated using RRTM. The layer averaged cloud particle
size (from SRBAVG2 GEO data) for ice clouds over the Indian region show variation
of effective particle size between the range 18–30 µm. Cloud ice particle size is di-5

rectly related to the cloud single scattering properties (Eq. 11), which in turn modulates
the SWCRF and NETCRF of the cloud system. In the present analysis, an attempt is
made to quantify the sensitivity of SWCRF to the ice cloud particle size. This is done
by computing the SWCRF over the three regions by varying the ice particle size of high
and upper middle level clouds (there by varying the SSA) in the cloud vertical model10

while keeping all other parameters constant. The ice particle size is varied from 20 to
40 µm and SWCRF values are computed each time using RRTM by incorporating the
modified SSA in the input cloud model. SWCRF estimated from the model simulations
are presented in Table 8. From Table 8, it can be seen that the SWCRF values show
a monotonic decrease with increasing ice particle size for the three regions. A max-15

imum decrease in SWCRF value of ∼ 10 Wm−2 for an increase in ice particle size
from 20 to 40 µm is observed over the Bay of Bengal region while it is much less over
the other two regions. The study indicates that increase in particle size leads to mod-
erate decrease in SWCRF and NETCRF over the study region. Studies have shown
changes in cloud particle (ice) size can modify the net radiative forcing of cirrus clouds20

to a cooling or warming regime depending on the direction of change (Zhang et al.,
1999). However, it is seems unlikely that small variation in cloud ice particle size (be-
tween 18–30 µm) over the Indian region alone can bring about the negative NETCRF
values observed over the region.

5.1.3 Influence of atmospheric water vapor on CRF25

In this section, sensitivity analysis carried out using RRTM to understand the influence
of atmospheric water vapor on the LWCRF over the three negative NETCRF regions
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are explained. Studies have shown that atmospheric water vapor can significantly in-
fluence the LW forcing by reducing the clear sky TOA flux (Sohn and Schmetz, 2004;
Sohn and Bennartz, 2008). Water vapor being an important greenhouse gas absorbs
the atmospheric LW radiation and decreases the LWCRF (while having little effect on
SWCRF). Roca et al. (2004) proposed that damping of LWCRF by large amount of wa-5

ter vapor present in the atmosphere over the Bay of Bengal region during the summer
monsoon season could be a reason for the observed negative NETCRF. In this anal-
ysis, CRF over the three negative NETCRF regions are simulated by varying the PW
vapor content in the atmosphere from their original values (between 48–58 mm) while
keeping all other parameters in model simulation constant. This is achieved by varying10

the relative humidity (thereby water vapor mixing ratio) of free troposphere in the model
atmosphere while keeping the boundary layer and stratospheric RH constant. This re-
sults in the formation of several model atmospheric profiles with distinctly different PW
values (between 33 to 68 mm). Using this methodology, variation of TOA LW flux and
LWCRF with PW for the three regions is examined.15

Variation of TOA LW flux (clear and total sky) and LWCRF with PW for the Bay
of Bengal region is shown in Fig. 6. In general, clear and total sky LW flux shows
a monotonic decrease with increase in PW. TOA LW clear sky flux over the Bay of
Bengal region shows a decrease of ∼ 45 Wm−2 for an increase in PW value from 33
to 68 mm while the total sky LW flux show a decrease of ∼ 20 Wm−2. The LWCRF20

also show considerable decrease over the Bay of Bengal region from 106 Wm−2 to
74 Wm−2 (decrease of ∼ 32 Wm−2) for a corresponding increase in PW from 33 mm
to 68 mm. Over Myanmar and the Western Ghats, LWCRF shows a decrease of ∼ 30
and ∼ 25 Wm−2 respectively, for a similar variation in PW from 33 mm to 68 mm. Sohn
et al. (2006) demonstrated that water vapor in the upper troposphere can contribute25

12 Wm−2 to the LWCRF over convectively active tropical regions. This analysis shows
that atmospheric water vapor can cause a relatively larger variation in LWCRF (and
in NETCRF) compared to other variables discussed in earlier sections. For a through
understanding, seasonal mean variation in PW over the Indian region during different
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seasons is also examined. Seasonal mean variation of precipitable water vapor (from
the CERES SRBAVG GEO/GMAO GEOS product) over the Indian region during the
summer and winter months are estimated and shown in Fig. 7. From Fig. 7a and b, it
can be seen that average value of PW observed over the Indian region is between 40
and 60 mm (summer months), while it is between ∼ 20–30 mm during the winter months5

(DJF). This indicates that between dry (winter) and wet (summer) seasons, PW content
in the atmosphere over the Indian region increases by ∼ 25–35 mm. RRTM simulations
shows that such increase in PW can cause a substantial decrease in clear sky TOA
flux (∼ 30–40 Wm−2) and LWCRF (∼ 20–30 Wm−2). From Fig. 6, it can be seen that
LWCRF over Bay of Bengal increase by ∼ 23 Wm−2 for a decrease in PW content from10

58 mm to 30 mm. Over the two land regimes, a similar increase in LWCRF is observed
though magnitude of increase in LWCRF is lower than that observed over the Bay of
Bengal region. From this analysis, it can be seen that the atmospheric water content
over these regions significantly modifies the observed LWCRF and NETCRF values.
Hence, relatively large amount of water vapor in the atmosphere over the three negative15

NETCRF regions during the summer monsoon season is a major factor controlling the
imbalance between SWCRF and LWCRF (and the negative NETCRF regimes).

6 Inter-comparison of the oceanic NETCRF regimes: Bay of Bengal vs. West
Pacific

We now consider two specific oceanic convective regions for a better understanding20

of the negative and near zero NETCRF regimes; the Bay of Bengal (10–22◦ N; 85–
100◦ E) during the Asian monsoon season (represent negative regime) and the West
Pacific (10◦ S–10◦ N; 140◦ E–180◦ E) during the March–April period (near zero regime).
The two regions share similar surface properties (ocean surface type) with almost sim-
ilar sea surface temperature (SST). Figure 8 presents the mean variation of CERES25

TOA NETCRF over the West Pacific during the March–April period for the years 2002–
2005. From Fig. 8, it can be seen that the regional variation of NETCRF over the West
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Pacific during this period lies mainly in the range of ±20 Wm−2. Negative NETCRF val-
ues (∼20 Wm−2) are observed over small areas close to the Indonesian islands while
rest of the region show positive or near zero NETCRF values. A similar regional vari-
ation of NETCRF over the Bay of Bengal (Fig. 3) region during the monsoon season
shows negative NETCRF values ranging from −10 to −70 Wm−2. For a more quanti-5

tative assessment, mean TOA flux and CRF over the two regions are estimated and
presented in Table 9. In general, the TOA SW (clear and total) flux values are largest
over the Bay of Bengal region compared to the West Pacific while the reverse is true
for TOA LW fluxes. Another interesting point here is the difference in clear sky TOA LW
flux between two regions; relatively lower TOA LW clear sky flux (276 Wm−2) values are10

observed over the Bay of Bengal compared to that over the West Pacific (285 Wm−2).
While LWCRF and SWCRF values over Bay of Bengal region shows large imbalance
(resulting in a NETCRF value ∼ −30 Wm−2), that over the West Pacific shows a near
balance between LWCRF and SWCRF (65 and −67 Wm−2, respectively) leading to
near zero NETCRF over the West Pacific. The disparity in the estimated CRF values15

observed over the two oceanic regions are evident in Table 9.
Table 10 presents the regional mean cloud fraction and cloud optical depth estimated

using CERES data over the Bay of Bengal and the West Pacific. From Table 10, it can
be seen that high level cloud fraction (∼ 51 %) observed over the Bay of Bengal is
relatively large compared to that observed over the West Pacific (∼ 38 %) while, lower20

level cloud types show almost similar variation over the two regions. A comparison of
cloud optical depth and cloud top altitude between the various cloud groups also show
similar variations. This indicates that cloud properties over the two convective regions
show a lot of similarities except for the high level cloud fraction. However, the interesting
question here is “whether the variation observed in the cloud amount (13 % and 5 % in25

high and upper middle cloud cover respectively between these two regions) alone can
cause the NETCRF to shift between near zero and negative values”? Rajeevan and
Sreenivasan (2000) postulated that large high cloud amount observed over the Bay of
Bengal region is the reason behind the large negative NETCRF compared to rest of

28922

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/28895/2013/acpd-13-28895-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/28895/2013/acpd-13-28895-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 28895–28951, 2013

Negative cloud
forcing

B. V. Thampi and R. Roca

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

tropical convective regions. However, RRTM simulations incorporating the mean cloud
and environmental variables over the West Pacific region show that such variability in
cloud cover alone is not enough to drive the system from a near zero to large negative
NETCRF regime.

The other important parameters that can influence the NETCRF over the two regions5

are cloud microphysical properties (cloud particle size, shape etc) and atmospheric wa-
ter content. Comparison of cloud particle size (∼ 25 µm for ice and ∼ 12 µm for water
clouds, respectively) over the two regions shows very little variation. The other variable
that can influence the NETCRF over the two regions is the atmospheric water vapor
content. In Sect. 5.1.3, influence of atmospheric water vapor on the TOA flux and CRF10

over the Indian region was discussed. A similar analysis is carried out to quantify the
influence of atmospheric water vapor on the NETCRF over the West Pacific. For this
purpose, monthly mean atmospheric water vapor content over the two regions from
special sensor microwave/imager (SSM/I) data (Wentz, 1997) was estimated for the
April (West Pacific) and July (Bay of Bengal) months (2002–2005) and is shown in15

Fig. 9. The atmospheric water vapor content over the Bay of Bengal during the July
month is extremely large (> 58 mm) compared to that observed over the West Pacific
region (∼ 45–55 mm) during April. Over the negative NETCRF regions (< −30 Wm−2)
of Bay of Bengal, the PW reaches as high as ∼ 68 mm. The water vapor information
over the land is not available from SSM/I data. However, from Fig. 9, it can be seen that20

the water vapor amount progressively increases towards land area (Myanmar coast)
over the Bay of Bengal region. Large values of atmospheric water vapor (> 65 mm) are
observed over the Bay of Bengal region close to Myanmar coast where the NETCRF
values also show negative values (< −30 Wm−2). Compared to the Bay of Bengal re-
gion, the water vapor loading over the West Pacific usually lies within 48–58 mm during25

the April month. Inter-annual variation of atmospheric water vapor content over the Bay
of Bengal region shows that precipitable water vapor amount reach as high as ∼ 70 mm
over the core negative NETCRF regions during the summer monsoon seasons, while
it hardly goes beyond 60 mm over the West Pacific during March–April. The redistribu-
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tion of water vapor associated with convection results in increased moistening of the
upper troposphere over the Indian region, which contribute significantly to the damp-
ing of LWCRF and creating an imbalance with SWCRF. Magnitude of such damping in
LWCRF over the West Pacific is relatively small compared to the Bay of Bengal region.
The increase in atmospheric water vapor content and high cloud amount could be the5

reason behind negative NETCRF values being observed over the Bay of Bengal region
compared to near zero NETCRF values observed over the West Pacific region.

7 Summary and discussion

The net cloud radiative forcing over the Indian land mass and adjacent oceanic re-
gions during the Asian summer monsoon season of 2002–2005 were investigated10

using CERES observations and RRTM simulations. The seasonal mean variation of
NETCRF over the Indian region during the Asian summer monsoon season showed
the existence of three strong negative NETCRF regimes; Bay of Bengal (∼ −31 Wm−2),
Myanmar (∼ −37 Wm−2) and the Western Ghats (∼ −31 Wm−2), respectively. Using
RRTM and cloud vertical model, the TOA flux and CRF over the negative NETCRF re-15

gions during the summer monsoon season was studied. Using the cloud vertical model
as input, NETCRF for the three regions were estimated using RRTM. The NETCRF val-
ues calculated from RRTM simulations found to agree well with CERES observations,
while that from ISCCP FD data showed large differences. Sensitivity of the negative
NETCRF values to various cloud micro/macro physical and environmental variables20

were carried out using model simulations. Sensitivity of ice particle size to the NETCRF
was evaluated by varying the ice particle radius (from 20 to 40 µm) in the parameter-
ization of SSA, which produced a maximum variation of ∼ 10 Wm−2 on the NETCRF
values. Decrease in cloud particle size found to increase the SWCRF with very little
variation in LWCRF. However, variations in CRF due to changes in cloud particle size25

alone is not sufficient enough to cause the formation of negative NETCRF regimes
observed over the Indian region.
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Studies showed that low level cloud fraction has very little influence in controlling
the NETCRF values over the three negative NETCRF regions. RRTM simulations of
LWCRF employing model atmosphere with varying PW values showed that atmo-
spheric water vapor content significantly influence the NETCRF values observed over
the region. A decrease in LWCRF by ∼ 25–35 Wm−2 is observed for an increase of PW5

from 25–35 mm over the negative NETCRF regions. The precipitable water amount is
found to be higher (> 55 mm) over the Bay of Bengal and Myanmar region compared
to other locations over the Indian region during the monsoon season. Similarly, the
clear sky TOA LW flux over Bay of Bengal and Myanmar region was found to be signifi-
cantly smaller (∼ 276 Wm−2) during the summer monsoon season compared to winter10

months (∼ 300 Wm−2). This increase in atmospheric water vapor associated with the
convective activity over the Indian region during the monsoon season reduces the TOA
LW clear sky flux and LWCRF. Influence of water vapor loading is largest over the North
Bay of Bengal region close to the Myanmar coast where the total cloud amount is also
largest. This indicates that the combined effect of large amount of high level clouds15

and increased atmospheric water vapor loading over the Indian region significantly in-
fluence the imbalance between LWCRF and SWCRF. Inter comparison between CRF
values observed over the Bay of Bengal and the West Pacific also indicates the im-
portance of atmospheric water vapor in controlling the magnitude of NETCRF values.
Precipitable water vapor content over the North Bay of Bengal region reaches as high20

as ∼ 70 mm during the monsoon months while it hardly reaches 60 mm over the West
Pacific. The damping of LWCRF caused by the increased atmospheric water vapor
loading and presence of large amount of high clouds over the Indian region during the
summer monsoon season creates an imbalance between SWCRF and LWCRF and is
accountable for the observed negative NETCRF values over the region.25
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Table 1. Mean values of TOA flux and CRF (in Wm−2) estimated for the three negative NETCRF
regimes for the summer monsoon season of 2002–2005.

Bay of Bengal Myanmar Western Ghats

Clear SW 45.6 64.5 61.9
Total SW 159 173.6 156.1
Clear LW 276.7 274.9 282.7
Total LW 194.1 202.6 219.7
SWCRF −113.4 −109.1 −94.2
LWCRF 82.6 72.3 63
NETCRF −30.8 −36.8 −31.2
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Table 2. Estimated uncertainties (in Wm−2) in the mean CERES TOA SW and LW fluxes due
to various error sources for the Bay of Bengal (BOB), Myanmar (MYN) and the Western Ghats
(WGS) region.

Flux Calibration Algorithm Sampling uncertainty (W m−2) Total uncertainty (W m−2)

BOB MYN WGS BOB MYN WGS

TSW 1 1 1.3 1.8 3.6 1.9 2.3 3.8
TLW 1.3 1.9 0.9 2.1 1.8 2.4 3.1 2.9
CSW 0.5 1.6 2. 2.9 3.7 2.6 3.4 4.1
CLW 1 3.3 1.03 1.05 1.2 3.6 3.6 3.7
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Table 3. Estimated uncertainty (in Wm−2) in the seasonal mean CERES NETCRF over the Bay
of Bengal, Myanmar and the Western Ghats.

Region of Contribution of Contribution of Total Uncertainty (δy )
Interest 1st term in Eq. (6) 2nd term in Eq. (6) in NETCRF (W m−2)

Bay of Bengal 29.6 −18.1 3.4
Myanmar 39.2 −19.7 4.4
Western Ghats 52.9 −18.6 5.8

28935

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/28895/2013/acpd-13-28895-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/28895/2013/acpd-13-28895-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 28895–28951, 2013

Negative cloud
forcing

B. V. Thampi and R. Roca

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 4. Seasonal mean values of cloud micro/macro physical properties and environmental
variables over the three negative NETCRF regimes for the period of June–September (2002–
2005).

Region Cloud cover (%) and cloud optical depth Cloud particle radius (mm) FTH PW Rain

High Upper Lower Lower Ice Water (%) (cm) (mm h−1)
middle middle

Bay of Bengal 51.6 25.6 4.7 5 24.8 13.9 42.2 5.7 0.42
(10–22◦ N, 85–100◦ E) (14.8) (5) (3.2) (2.5)

Western Ghats 22 34.1 13.5 14 24.6 12.7 36.9 4.8 0.36
(10–20◦ N, 72–77◦ E) (10) (7.2) (7.1) (5)

Myanmar 32.4 43.2 12.5 4.5 23.2 13.3 37.8 5.6 0.38
(15–20◦ N, 92–100◦ E) (12) (8.8) (7) (4.8)
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Table 5. Inter comparison of CERES TOA flux (bold) with that estimated from RRTM simula-
tions (italicized) and ISSCP FD flux (third) for the Bay of Bengal, Myanmar and the Western
Ghats regions, respectively.

TOA flux Bay of Bengal Myanmar Western Ghats

Clear SW 45.6 64.5 61.9
(W m−2) 46.8 63.4 61.9

55.4 71 68.6

Total SW 159 173.6 156.1
(W m−2) 160.1 166 151.4

162.6 181.9 154.1

Clear LW 276.7 274.9 282.7
(W m−2) 276.9 275.1 284.7

278.7 276.2 280.5

Total LW 194.14 202.6 219.7
(W m−2) 195.9 209.6 225.6

206.2 215.2 231.2
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Table 6. Inter comparison of SWCRF, LWCRF and NETCRF (in Wm−2) from CERES observa-
tions (bold) with that calculated from RRTM simulations (italicized) and ISCCP FD flux (third
value) for the Bay of Bengal, Myanmar and the Western Ghats regions. Uncertainty associated
with CERES NETCRF values are also provided (values after ± sign).

TOA CRF Bay of Bengal Myanmar Western Ghats

SWCRF −113.4 −109.1 −94.2
−113.3 −102.6 −89.5
−107.2 −110.9 −85.5

LWCRF 82.6 72.3 63
81 65.5 59.2

72.6 61.1 49.4

NETCRF −30.8 ± 3.4 −36.8 ± 4.4 −31.2 ± 5.8
−32.3 −37 −30.3
−34.6 −49.8 −36.1
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Table 7. RRTM simulation of SWCRF and LWCRF values (in Wm−2) for the three negative
NETCRF regions by changing low level cloud amount in the respective cloud vertical model.

Region CRF (W m−2) values estimated when
un-obscured portions of low level clouds are

Present Absent

Bay of Bengal SWCRF −113.4 −111.6
LWCRF 81 80.8

Myanmar SWCRF −102.6 100.8
LWCRF 66.5 66.3

Western Ghats SWCRF −89.5 −82.5
LWCRF 59.2 58
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Table 8. RRTM simulation of SWCRF (Wm−2) using different ice particle size (varying SSA
values) values in the cloud vertical model for the Bay of Bengal, Myanmar and the Western
Ghats regions.

Ice particle radius Bay of Bengal Myanmar Western Ghats
(µm)

20 −116 −104.3 −90.6
25 −112.7 −102.6 −89.5
30 −109.6 −101.1 −88.5
35 −107.9 −100.2 −87.9
40 −106.2 −99.3 −87.3
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Table 9. Seasonal mean values of TOA Flux (Wm−2) and CRF (Wm−2) over the Bay of Bengal
and the West Pacific region for the period 2002–2005.

REGION Clear Sky Total sky SWCRF LWCRF NETCRF

SW LW SW LW

Bay of Bengal 45.6 276.7 159 194.1 −113.4 82.6 −30.8
(Jun–Sep)
West Pacific 40 285.2 107.7 220 −67.7 65.2 −2.5
(Mar–Apr)
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Table 10. Seasonal mean values of cloud fraction (%) and cloud optical depth (in bracket) over
the Bay of Bengal and the West Pacific region for the period 2002–2005.

REGION Cloud cover (%) and cloud optical depth

High Upper mid Lower mid Low

Bay of Bengal 51.6 (14.8) 25.6 (4.9) 4.7 (3.2) 5 (2.1)
(Jun–Sep)
West Pacific 38.5 (12.7) 20.1 (4.6) 4.3 (3.5) 7 (2.3)
(Mar–Apr)
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Fig. 1. Schematic of a typical vertical distribution of cloud fraction. Each shaded block rep-
resents the effective cloud amount for the respective cloud group estimated using the cloud
fraction data and cloud overlap (maximum/random) scheme.
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Fig. 2. Seasonal mean variation of (a) SWCRF and (b) LWCRF over the Indian region during
the summer monsoon season of 2002–2005. Color bar represents the CRF values in Wm−2.
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Fig. 3. Seasonal mean map of NETCRF over the Indian region during the summer monsoon
season of 2002–2005. The negative NETCRF regimes (1) Bay of Bengal (2) Myanmar and
(3) the Western Ghats (marked in boxes) are also shown. Color bar represents the NETCRF
values in Wm−2.
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Fig. 4. Seasonal mean variation of (a) high cloud fraction (%) and (b) upper middle cloud
fraction (%) over the Indian region during the summer monsoon season of 2002–2005. Color
bar represents the mean cloud fraction in percentage.

28946

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/28895/2013/acpd-13-28895-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/28895/2013/acpd-13-28895-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 28895–28951, 2013

Negative cloud
forcing

B. V. Thampi and R. Roca

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 5. Variation in LWCRF (left panel) and SWCRF (right panel) values with cloud top pressure
for the Bay of Bengal (thick line) and Myanmar region (dashed line) respectively, estimated
using RRTM.
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Fig. 6. Variation in TOA LW clear and total sky flux (left panel) and LWCRF (right panel) with
Precipitable water (PW) over the Bay of Bengal region during the summer monsoon season
using RRTM simulation.
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Fig. 7. Contour plots of seasonal mean variation of precipitable water (mm) content over the
Indian region during the (a) summer monsoon season and (b) winter season for the period
2002–2005.
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Fig. 8. Seasonal mean variation of NETCRF (Wm−2) over the West Pacific region during the
March–April period (2002–2005). Color bar represents the NETCRF values in Wm−2.
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Fig. 9. Regional variation of monthly mean atmospheric water vapor (mm) from SSM/I over the
Indian region (top panel) during the month of July and the West Pacific (bottom panel) during
the month of April for the years 2002–2005.
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